Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.236
Filtrar
1.
Cell Mol Life Sci ; 81(1): 168, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587639

RESUMO

Kinesin family member 3A (KIF3A) is a microtubule-oriented motor protein that belongs to the kinesin-2 family for regulating intracellular transport and microtubule movement. In this study, we characterized the critical roles of KIF3A during mouse oocyte meiosis. We found that KIF3A associated with microtubules during meiosis and depletion of KIF3A resulted in oocyte maturation defects. LC-MS data indicated that KIF3A associated with cell cycle regulation, cytoskeleton, mitochondrial function and intracellular transport-related molecules. Depletion of KIF3A activated the spindle assembly checkpoint, leading to metaphase I arrest of the first meiosis. In addition, KIF3A depletion caused aberrant spindle pole organization based on its association with KIFC1 to regulate expression and polar localization of NuMA and γ-tubulin; and KIF3A knockdown also reduced microtubule stability due to the altered microtubule deacetylation by histone deacetylase 6 (HDAC6). Exogenous Kif3a mRNA supplementation rescued the maturation defects caused by KIF3A depletion. Moreover, KIF3A was also essential for the distribution and function of mitochondria, Golgi apparatus and endoplasmic reticulum in oocytes. Conditional knockout of epithelial splicing regulatory protein 1 (ESRP1) disrupted the expression and localization of KIF3A in oocytes. Overall, our results suggest that KIF3A regulates cell cycle progression, spindle assembly and organelle distribution during mouse oocyte meiosis.


Assuntos
Cinesinas , Oócitos , Animais , Camundongos , Transporte Biológico , Cinesinas/genética , Meiose , Metáfase
2.
Nat Commun ; 15(1): 2941, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580643

RESUMO

Programmed DNA double-strand break (DSB) formation is a crucial feature of meiosis in most organisms. DSBs initiate recombination-mediated linking of homologous chromosomes, which enables correct chromosome segregation in meiosis. DSBs are generated on chromosome axes by heterooligomeric focal clusters of DSB-factors. Whereas DNA-driven protein condensation is thought to assemble the DSB-machinery, its targeting to chromosome axes is poorly understood. We uncover in mice that efficient biogenesis of DSB-machinery clusters requires seeding by axial IHO1 platforms. Both IHO1 phosphorylation and formation of axial IHO1 platforms are diminished by chemical inhibition of DBF4-dependent kinase (DDK), suggesting that DDK contributes to the control of the axial DSB-machinery. Furthermore, we show that axial IHO1 platforms are based on an interaction between IHO1 and the chromosomal axis component HORMAD1. IHO1-HORMAD1-mediated seeding of the DSB-machinery on axes ensures sufficiency of DSBs for efficient pairing of homologous chromosomes. Without IHO1-HORMAD1 interaction, residual DSBs depend on ANKRD31, which enhances both the seeding and the growth of DSB-machinery clusters. Thus, recombination initiation is ensured by complementary pathways that differentially support seeding and growth of DSB-machinery clusters, thereby synergistically enabling DSB-machinery condensation on chromosomal axes.


Assuntos
Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Camundongos , Animais , Proteínas de Ciclo Celular/metabolismo , DNA , Meiose/genética , Complexo Sinaptonêmico/metabolismo , Recombinação Genética , Recombinação Homóloga
4.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575358

RESUMO

For establishing sister chromatid cohesion and proper chromosome segregation in mitosis in fission yeast, the acetyltransferase Eso1 plays a key role. Eso1 acetylates cohesin complexes, at two conserved lysine residues K105 and K106 of the cohesin subunit Psm3. Although Eso1 also contributes to reductional chromosome segregation in meiosis, the underlying molecular mechanisms have remained elusive. Here, we purified meiosis-specific Rec8 cohesin complexes localized at centromeres and identified a new acetylation at Psm3-K1013, which largely depends on the meiotic kinetochore factor meikin (Moa1). Our molecular genetic analyses indicate that Psm3-K1013 acetylation cooperates with canonical acetylation at Psm3-K105 and K106, and plays a crucial role in establishing reductional chromosome segregation in meiosis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , 60634 , Segregação de Cromossomos/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Acetilação , Meiose/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
5.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612384

RESUMO

3-methyl-4-nitrophenol (PNMC), a well-known constituent of diesel exhaust particles and degradation products of insecticide fenitrothion, is a widely distributed environmental contaminant. PNMC is toxic to the female reproductive system; however, how it affects meiosis progression in oocytes is unknown. In this study, in vitro maturation of mouse oocytes was applied to investigate the deleterious effects of PNMC. We found that exposure to PNMC significantly compromised oocyte maturation. PNMC disturbed the spindle stability; specifically, it decreased the spindle density and increased the spindle length. The weakened spindle pole location of microtubule-severing enzyme Fignl1 may result in a defective spindle apparatus in PNMC-exposed oocytes. PNMC exposure induced significant mitochondrial dysfunction, including mitochondria distribution, ATP production, mitochondrial membrane potential, and ROS accumulation. The mRNA levels of the mitochondria-related genes were also significantly impaired. Finally, the above-mentioned alterations triggered early apoptosis in the oocytes. In conclusion, PNMC exposure affected oocyte maturation and quality through the regulation of spindle stability and mitochondrial function.


Assuntos
Doenças Mitocondriais , Oócitos , Feminino , Animais , Camundongos , Cresóis , DNA Mitocondrial , Meiose
6.
Biochem Soc Trans ; 52(2): 593-602, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563493

RESUMO

Malaria, a vector borne disease, is a major global health and socioeconomic problem caused by the apicomplexan protozoan parasite Plasmodium. The parasite alternates between mosquito vector and vertebrate host, with meiosis in the mosquito and proliferative mitotic cell division in both hosts. In the canonical eukaryotic model, cell division is either by open or closed mitosis and karyokinesis is followed by cytokinesis; whereas in Plasmodium closed mitosis is not directly accompanied by concomitant cell division. Key molecular players and regulatory mechanisms of this process have been identified, but the pivotal role of certain protein complexes and the post-translational modifications that modulate their actions are still to be deciphered. Here, we discuss recent evidence for the function of known proteins in Plasmodium cell division and processes that are potential novel targets for therapeutic intervention. We also identify key questions to open new and exciting research to understand divergent Plasmodium cell division.


Assuntos
Divisão Celular , Malária , Plasmodium , Proteínas de Protozoários , Plasmodium/metabolismo , Plasmodium/fisiologia , Animais , Humanos , Malária/parasitologia , Malária/metabolismo , Proteínas de Protozoários/metabolismo , Mitose , Citocinese , Meiose , Processamento de Proteína Pós-Traducional , Interações Hospedeiro-Parasita
7.
Elife ; 122024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629825

RESUMO

Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/metabolismo , Centrômero/metabolismo , Cinetocoros/metabolismo , Meiose , Plantas/genética , Resposta ao Choque Térmico , Segregação de Cromossomos
8.
J Cell Sci ; 137(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38606789

RESUMO

Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.


Assuntos
Borboletas , Camundongos , Humanos , Animais , Ovinos/genética , Borboletas/genética , Cromossomos/genética , Meiose/genética , Centrômero , Translocação Genética/genética , Mamíferos
9.
Cell Mol Life Sci ; 81(1): 194, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653846

RESUMO

Sex chromosome aneuploidies are among the most common variations in human whole chromosome copy numbers, with an estimated prevalence in the general population of 1:400 to 1:1400 live births. Unlike whole-chromosome aneuploidies of autosomes, those of sex chromosomes, such as the 47, XXY aneuploidy that causes Klinefelter Syndrome (KS), often originate from the paternal side, caused by a lack of crossover (CO) formation between the X and Y chromosomes. COs must form between all chromosome pairs to pass meiotic checkpoints and are the product of meiotic recombination that occurs between homologous sequences of parental chromosomes. Recombination between male sex chromosomes is more challenging compared to both autosomes and sex chromosomes in females, as it is restricted within a short region of homology between X and Y, called the pseudo-autosomal region (PAR). However, in normal individuals, CO formation occurs in PAR with a higher frequency than in any other region, indicating the presence of mechanisms that promote the initiation and processing of recombination in each meiotic division. In recent years, research has made great strides in identifying genes and mechanisms that facilitate CO formation in the PAR. Here, we outline the most recent and relevant findings in this field. XY chromosome aneuploidy in humans has broad-reaching effects, contributing significantly also to Turner syndrome, spontaneous abortions, oligospermia, and even infertility. Thus, in the years to come, the identification of genes and mechanisms beyond XY aneuploidy is expected to have an impact on the genetic counseling of a wide number of families and adults affected by these disorders.


Assuntos
Pareamento Cromossômico , Segregação de Cromossomos , Meiose , Humanos , Animais , Pareamento Cromossômico/genética , Masculino , Meiose/genética , Camundongos , Segregação de Cromossomos/genética , Feminino , Aneuploidia , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Cromossomos Sexuais/genética , Troca Genética/genética
10.
BMC Genomics ; 25(1): 295, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509455

RESUMO

BACKGROUND: Mammalian testis is a highly complex and heterogeneous tissue. This complexity, which mostly derives from spermatogenic cells, is reflected at the transcriptional level, with the largest number of tissue-specific genes and long noncoding RNAs (lncRNAs) compared to other tissues, and one of the highest rates of alternative splicing. Although it is known that adequate alternative-splicing patterns and stage-specific isoforms are critical for successful spermatogenesis, so far only a very limited number of reports have addressed a detailed study of alternative splicing and isoforms along the different spermatogenic stages. RESULTS: In the present work, using highly purified stage-specific testicular cell populations, we detected 33,002 transcripts expressed throughout mouse spermatogenesis not annotated so far. These include both splice variants of already annotated genes, and of hitherto unannotated genes. Using conservative criteria, we uncovered 13,471 spermatogenic lncRNAs, which reflects the still incomplete annotation of lncRNAs. A distinctive feature of lncRNAs was their lower number of splice variants compared to protein-coding ones, adding to the conclusion that lncRNAs are, in general, less complex than mRNAs. Besides, we identified 2,794 unannotated transcripts with high coding potential (including some arising from yet unannotated genes), many of which encode unnoticed putative testis-specific proteins. Some of the most interesting coding splice variants were chosen, and validated through RT-PCR. Remarkably, the largest number of stage-specific unannotated transcripts are expressed during early meiotic prophase stages, whose study has been scarcely addressed in former transcriptomic analyses. CONCLUSIONS: We detected a high number of yet unannotated genes and alternatively spliced transcripts along mouse spermatogenesis, hence showing that the transcriptomic diversity of the testis is considerably higher than previously reported. This is especially prominent for specific, underrepresented stages such as those of early meiotic prophase, and its unveiling may constitute a step towards the understanding of their key events.


Assuntos
RNA Longo não Codificante , Masculino , Camundongos , Animais , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Meiose , Espermatogênese/genética , Testículo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Mamíferos/genética
11.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448160

RESUMO

In meiosis I, unlike in mitosis, sister kinetochores are captured by microtubules emanating from the same spindle pole (mono-orientation) and centromeric cohesion mediated by cohesin is protected in the following anaphase I. The conserved meiosis-specific kinetochore protein meikin (Moa1 in fission yeast) associates with polo-like kinase: Plo1 and regulates both mono-orientation and cohesion protection. Although the phosphorylation of Rec8-S450 by Plo1 associated with Moa1 plays a key role in cohesion protection, how Moa1-Plo1 regulates mono-orientation remains elusive. Here, we identify Plo1 phosphorylation sites in the cohesin subunits, Rec8 and Psm3. The non-phosphorylatable mutations at these sites showed specific defects in mono-orientation. These results enabled the genetic dissection of meikin functions at the centromeres.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Cinetocoros , Fosforilação , 60634 , Meiose , Centrômero , Schizosaccharomyces/genética , Proteínas Serina-Treonina Quinases , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Ciclo Celular/genética
12.
Development ; 151(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38546043

RESUMO

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Animais , Feminino , Camundongos , Ciclossomo-Complexo Promotor de Anáfase/genética , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Oócitos/metabolismo , Ubiquitinas/metabolismo
13.
Cell Commun Signal ; 22(1): 199, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553728

RESUMO

KIFC3 is a member of Kinesin-14 family motor proteins, which play a variety of roles such as centrosome cohesion, cytokinesis, vesicles transportation and cell proliferation in mitosis. Here, we investigated the functional roles of KIFC3 in meiosis. Our findings demonstrated that KIFC3 exhibited expression and localization at centromeres during metaphase I, followed by translocation to the midbody at telophase I throughout mouse oocyte meiosis. Disruption of KIFC3 activity resulted in defective polar body extrusion. We observed aberrant meiotic spindles and misaligned chromosomes, accompanied by the loss of kinetochore-microtubule attachment, which might be due to the failed recruitment of BubR1/Bub3. Coimmunoprecipitation data revealed that KIFC3 plays a crucial role in maintaining the acetylated tubulin level mediated by Sirt2, thereby influencing microtubule stability. Additionally, our findings demonstrated an interaction between KIFC3 and PRC1 in regulating midbody formation during telophase I, which is involved in cytokinesis regulation. Collectively, these results underscore the essential contribution of KIFC3 to spindle assembly and cytokinesis during mouse oocyte meiosis.


Assuntos
Citocinese , Cinesinas , Animais , Camundongos , Cinesinas/genética , Cinesinas/metabolismo , Meiose , Microtúbulos/metabolismo , Oócitos/metabolismo
14.
Mol Ecol ; 33(8): e17320, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506152

RESUMO

Sexual reproduction is a major driver of adaptation and speciation in eukaryotes. In diatoms, siliceous microalgae with a unique cell size reduction-restitution life cycle and among the world's most prolific primary producers, sex also acts as the main mechanism for cell size restoration through the formation of an expanding auxospore. However, the molecular regulators of the different stages of sexual reproduction and size restoration are poorly explored. Here, we combined RNA sequencing with the assembly of a 55 Mbp reference genome for Cylindrotheca closterium to identify patterns of gene expression during different stages of sexual reproduction. These were compared with a corresponding transcriptomic time series of Seminavis robusta to assess the degree of expression conservation. Integrative orthology analysis revealed 138 one-to-one orthologues that are upregulated during sex in both species, among which 56 genes consistently upregulated during cell pairing and gametogenesis, and 11 genes induced when auxospores are present. Several early, sex-specific transcription factors and B-type cyclins were also upregulated during sex in other pennate and centric diatoms, pointing towards a conserved core regulatory machinery for meiosis and gametogenesis across diatoms. Furthermore, we find molecular evidence that the pheromone-induced cell cycle arrest is short-lived in benthic diatoms, which may be linked to their active mode of mate finding through gliding. Finally, we exploit the temporal resolution of our comparative analysis to report the first marker genes for auxospore identity called AAE1-3 ("Auxospore-Associated Expression"). Altogether, we introduce a multi-species model of the transcriptional dynamics during size restoration in diatoms and highlight conserved gene expression dynamics during different stages of sexual reproduction.


Assuntos
Diatomáceas , Diatomáceas/genética , Reprodução/genética , Meiose , Genoma , Transcriptoma/genética
15.
Theor Appl Genet ; 137(4): 86, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512498

RESUMO

KEY MESSAGE: Recent developments in understanding the distribution and distinctive features of recombination hotspots are reviewed and approaches are proposed to increase recombination frequency in coldspot regions. Recombination events during meiosis provide the foundation and premise for creating new varieties of crops. The frequency of recombination in different genomic regions differs across eukaryote species, with recombination generally occurring more frequently at the ends of chromosomes. In most crop species, recombination is rare in centromeric regions. If a desired gene variant is linked in repulsion with an undesired variant of a second gene in a region with a low recombination rate, obtaining a recombinant plant combining two favorable alleles will be challenging. Traditional crop breeding involves combining desirable genes from parental plants into offspring. Therefore, understanding the mechanisms of recombination and factors affecting the occurrence of meiotic recombination is important for crop breeding. Here, we review chromosome recombination types, recombination mechanisms, genes and proteins involved in the meiotic recombination process, recombination hotspots and their regulation systems and discuss how to increase recombination frequency in recombination coldspot regions.


Assuntos
Recombinação Homóloga , Melhoramento Vegetal , Genoma , Centrômero , Produtos Agrícolas/genética , Meiose/genética
16.
Free Radic Biol Med ; 217: 157-172, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552928

RESUMO

Obesity has significant repercussions for female reproductive health, including adverse effects on oocyte quality, fertility, embryo development and offspring health. Here, we showed that intermittent fasting (IF) has several notable effects on follicular development, oocyte development and maturation and offspring health in obese mice. IF treatment prevents obesity-associated germline-soma communication defects, mitochondrial dysfunction, oxidative damage, apoptosis, and spindle/chromosomal disruption. RNA-sequencing analysis of oocytes from normal diet (ND), high-fat diet (HFD), and HFD + IF mice indicated that IF treatment improved mitochondrial oxidative phosphorylation function and mRNA storage and translation, which was potentially mediated by the Smith-like family member 14 B (LSM14B). Knockdown of LSM14B by siRNA injection in oocytes from ND mice recapitulates all the translation, mitochondrial dysfunction and meiotic defect phenotypes of oocytes from HFD mice. Remarkably, the injection of Lsm14b mRNA into oocytes from HFD mice rescued the translation, mitochondrial dysfunction and meiotic defect phenotypes. These results demonstrated that dysfunction in the oocyte translation program is associated with obesity-induced meiotic defects, while IF treatment increased LSM14B expression and maternal mRNA translation and restored oocyte quality. This research has important implications for understanding the effects of obesity on female reproductive health and offers a potential nonpharmacological intervention to improve oocyte quality and fertility in obese individuals.


Assuntos
Doenças Mitocondriais , RNA Mensageiro Estocado , Feminino , Camundongos , Animais , RNA Mensageiro Estocado/metabolismo , Camundongos Obesos , Jejum Intermitente , Meiose , Oócitos/metabolismo , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Doenças Mitocondriais/metabolismo
17.
Development ; 151(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38512324

RESUMO

The conserved MRE11-RAD50-NBS1/Xrs2 complex is crucial for DNA break metabolism and genome maintenance. Although hypomorphic Rad50 mutation mice showed normal meiosis, both null and hypomorphic rad50 mutation yeast displayed impaired meiosis recombination. However, the in vivo function of Rad50 in mammalian germ cells, particularly its in vivo role in the resection of meiotic double strand break (DSB) ends at the molecular level remains elusive. Here, we have established germ cell-specific Rad50 knockout mouse models to determine the role of Rad50 in mitosis and meiosis of mammalian germ cells. We find that Rad50-deficient spermatocytes exhibit defective meiotic recombination and abnormal synapsis. Mechanistically, using END-seq, we demonstrate reduced DSB formation and abnormal DSB end resection occurs in mutant spermatocytes. We further identify that deletion of Rad50 in gonocytes leads to complete loss of spermatogonial stem cells due to genotoxic stress. Taken together, our results reveal the essential role of Rad50 in mammalian germ cell meiosis and mitosis, and provide in vivo views of RAD50 function in meiotic DSB formation and end resection at the molecular level.


Assuntos
Proteínas de Saccharomyces cerevisiae , Masculino , Camundongos , Animais , Proteínas de Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Mutação com Perda de Função , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Saccharomyces cerevisiae/genética , Mutação , Meiose/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Reparo do DNA/genética , Mamíferos/metabolismo
18.
Res Vet Sci ; 171: 105222, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513461

RESUMO

In vitro maturation (IVM) of oocytes is clinically used in horses to produce blastocysts but current conditions used for horses are suboptimal. We analyzed the composition of equine preovulatory follicular fluid (FF) secretome and tested its effects on meiotic competence and gene expression in oocytes subjected to IVM. Preovulatory FF was obtained, concentrated using ultrafiltration with cut-off of 10 kDa, and stored at -80 °C. The metabolic and proteomic composition was analyzed, and its ultrastructural composition was assessed by cryo-transmission microscopy. Oocytes obtained post-mortem or by ovum pick up (OPU) were subjected to IVM in the absence (control) or presence of 20 or 40 µg/ml (S20 or S40) of secretome. Oocytes were then analyzed for chromatin configuration or snap frozen for gene expression analysis. Proteomic analysis detected 255 proteins in the Equus caballus database, mostly related to the complement cascade and cholesterol metabolism. Metabolomic analysis yielded 14 metabolites and cryo-transmission electron microscopy analysis revealed the presence of extracellular vesicles (EVs). No significant differences were detected in maturation rates among treatments. However, the expression of GDF9 and BMP15 significantly increased in OPU-derived oocytes compared to post-mortem oocytes (fold increase ± SEM: 9.4 ± 0.1 vs. 1 ± 0.5 for BMP15 and 9.9 ± 0.3 vs. 1 ± 0.5 for GDF9, respectively; p < 0.05). Secretome addition increased the expression of TNFAIP6 in S40 regardless of the oocyte source. Further research is necessary to fully understand whether secretome addition influences the developmental competence of equine oocytes.


Assuntos
Líquido Folicular , Proteômica , Feminino , Cavalos , Animais , Líquido Folicular/química , Líquido Folicular/metabolismo , Secretoma , Meiose , Oócitos/metabolismo , Técnicas de Maturação in Vitro de Oócitos/veterinária
19.
Theor Appl Genet ; 137(4): 79, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472376

RESUMO

KEY MESSAGE: Multiple QTLs control unreduced pollen production in potato. Two major-effect QTLs co-locate with mutant alleles of genes with homology to AtJAS, a known regulator of meiotic spindle orientation. In diploid potato the production of unreduced gametes with a diploid (2n) rather than a haploid (n) number of chromosomes has been widely reported. Besides their evolutionary important role in sexual polyploidisation, unreduced gametes also have a practical value for potato breeding as a bridge between diploid and tetraploid germplasm. Although early articles argued for a monogenic recessive inheritance, the genetic basis of unreduced pollen production in potato has remained elusive. Here, three diploid full-sib populations were genotyped with an amplicon sequencing approach and phenotyped for unreduced pollen production across two growing seasons. We identified two minor-effect and three major-effect QTLs regulating this trait. The two QTLs with the largest effect displayed a recessive inheritance and an additive interaction. Both QTLs co-localised with genes encoding for putative AtJAS homologs, a key regulator of meiosis II spindle orientation in Arabidopsis thaliana. The function of these candidate genes is consistent with the cytological phenotype of mis-oriented metaphase II plates observed in the parental clones. The alleles associated with elevated levels of unreduced pollen showed deleterious mutation events: an exonic transposon insert causing a premature stop, and an amino acid change within a highly conserved domain. Taken together, our findings shed light on the natural variation underlying unreduced pollen production in potato and will facilitate interploidy breeding by enabling marker-assisted selection for this trait.


Assuntos
Arabidopsis , Solanum tuberosum , Melhoramento Vegetal , Pólen/genética , Genótipo , Arabidopsis/genética , Meiose
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...